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This paper presents two models for predicting the frequency response of micro-scale oscillatory
probes. These probes are manufactured by attaching a thin fiber to the free end of one tine of a
quartz tuning fork oscillator. In these studies, the attached fibers were either 75 µm diameter tungsten
or 7 µm diameter carbon with lengths ranging from around 1 to 15 mm. The oscillators used in these
studies were commercial 32.7 kHz quartz tuning forks. The first theoretical model considers lateral
vibration of two beams serially connected and provides a characteristic equation from which the
roots (eigenvalues) are extracted to determine the natural frequencies of the probe. A second, lumped
model approximation is used to derive an approximate frequency response function for prediction
of tine displacements as a function of a modal force excitation corresponding to the first mode of
the tine in the absence of a fiber. These models are used to evaluate the effect of changes in both
length and diameter of the attached fibers. Theoretical values of the natural frequencies of different
modes show an asymptotic relationship with the length and a linear relationship with the diameter of
the attached fiber. Similar results are observed from experiment, one with a tungsten probe having
an initial fiber length of 14.11 mm incrementally etched down to 0.83 mm, and another tungsten
probe of length 8.16 mm incrementally etched in diameter, in both cases using chronocoulometry
to determine incremental volumetric material removal. The lumped model is used to provide a
frequency response again reveals poles and zeros that are consistent with experimental measurements.
Finite element analysis shows mode shapes similar to experimental microscope observations of the
resonating carbon probes. This model provides a means of interpreting measured responses in terms
of the relative motion of the tine and attached fibers. Of particular relevance is that, when a “zero”
is observed in the response of the tine, one mode of the fiber is matched to the tine frequency and is
acting as an absorber. This represents an optimal condition for contact sensing and for transferring
energy to the fiber for fluid mixing, touch sensing, and surface modification applications. Published
by AIP Publishing. [http://dx.doi.org/10.1063/1.4954164]

I. INTRODUCTION

Tuning fork and other quartz-based oscillators are
commonly used as timers in clocks, AFM probes,1–4 touch
sensitive sensors, micro-robotics fingers,5–7 and micro bal-
ances.8 Micro-scale oscillatory probes made by attaching
carbon, glass, or tungsten fibers to a quartz tuning fork
tine provide a capability to both oscillate the fiber and
monitor changes in its response when the fiber comes into
proximity with external objects or is immersed in fluids.
These probes have been used for a broad range of applications
including for surface modification studies in vortex machining
process,9–11 touch probes in coordinate measuring machines
(CMMs),6 touch-sensitive micro-robotic fingers,5 and in high
speed fluid-flow in microfluidics studies.12 Another study

a)Author to whom correspondence should be addressed. Electronic mail:
skafashi@uncc.edu.

plans to use these tuning fork-based micro probes for inves-
tigation on micro-particles dynamics around dynamically
vibrating objects for non-contact manipulation of particles
immersed in fluids, which can be used for assembly and
sorting/shepherding particles.13–16

To better control these processes, it is necessary to
interpret the measured responses of the probes in terms of
the fiber and tuning fork dynamics. Hence a mathematical
model of oscillating fibers attached to a tuning fork tine is
provided in this article. This will be represented in two main
sections, the theory behind the two serially connected beams
model and the lumped absorber model, results from which are
compared with experimental data and finite element analysis
(FEA).

II. THEORY

In most of the micro-probe applications, a tuning fork is
used as an oscillation mechanism to drive a fiber attached to
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FIG. 1. Model of tuning fork with a tungsten fiber attached to its upper tine
showing the critical dimensional parameters used for vibration analysis of the
probe system.

it. This section presents two vibration models of the tuning
fork-based probes one is two Euler-beams serially connected
and the other is a simplified lumped model approximation. A
3D solid model of a 75 µm diameter tungsten fiber attached
to a tuning fork tine with the important geometric parameters
is shown in Figure 1.

The blue and red regions in the model represent the
electrodes to which an oscillating potential difference is
applied.

A. Lateral vibration of two beams serially connected

Using the Euler beam equation,17 mode shapes for these
two beams are given by

y1(x1,q1)
q1

= A1 cos (α1x1) + A2 cosh (α1x1)
+ A3 sin (α1x1) + A4 sinh (α1x1) , (1)

y2(x2,q2)
q2

= B1 cos (α2x2) + B2 cosh (α2x2)
+ B3 sin (α2x2) + B4 sinh (α2x2) , (2)

α4
1 =

m1

L1E1I1
ω2

s,α2 =
m2

L2E2I2
ω2

s.

The parameters y1 and y2 are the lateral deflections of the
tuning fork tine and fiber as a function of axial distances x1 and
x2 measured from the fixed end, respectively. Additionally,
parameters m, E, L, and I represent the mass, elastic

FIG. 2. Lumped absorber model of the fiber probe.

modulus, length, and second moment of area about the neutral
axis of bending with subscripts 1 and 2 representing the
tuning fork tine and the fiber, respectively. To determine
mode shapes and natural frequencies, it is necessary that
the above equations satisfy the eight boundary conditions
(a)–( f )

(a) y1 =
dy1

dx1

�����x1=0
= 0,

(b) y1|x1=L1
= y2|x2=0,

(c) dy1

dx1

�����x1=L1

=
dy2

dx2

�����x2=0
,

(d) E1I1
d2y1

dx2
1

������x1=L1

= E2I2
d2y2

dx2
2

������x2=0

,

(e) E1I1
d3y1

dx3
1

������x1=L1

= E2I2
d3y2

dx3
2

������x2=0

,

( f ) d2y2

dx2
2

=
d3y2

dx3
2

������x2=L2

= 0.

. (3)

From the first of these conditions, Equations (1) and (2) can
be rearranged in a simplified form

y1(x1,q1)
q1

= A1 (cos (α1x1) − cosh (α1x1))
+ A3 (sin (α1x1) − sinh (α1x1)) , (4)

y2(x2,q2)
q2

= B1 cos (α2x2) + B2 cosh (α2x2)
+ B3 sin (α2x2) + B4 sinh (α2x2) . (5)

To solve for the natural frequency of this combined system it is
necessary to express the α coefficients in terms of a common
eigenvalue form

ω2
s = (αs1L1)4 E1I1

ρ1A1L4
1

= (αs1L1)4 E1I1

m1L3
1

= (αs2L2)4 E2I2

m2L3
2

, (6)

(αs1L1)4 = (αs2L2)4
m1L3

1

m2L3
2

E2I2

E1I1
= (αs2L2)4λκ

= β4(αs2L2)4, (7)

γ =
L2

L1
, ϕ = α2L2, (8)

αs1 = β
L2

L1
, αs2 = βγαs2. (9)

The description of these parameters and their values in the
model are given in Tables II and III. In Equation (6), the
subscript s represents the modal frequency. It is important to
note that the constant β is a function only of the materials and
geometry of the fiber and tine. Appendix details the derivation
of the equations of this section.

Equations (A3)–(A7) (provided in the Appendix) can be
written in matrix form
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

cos (βα2L2) − cosh (βα2L2) sin (βα2L2) − sinh (βα2L2) −1 −1 0 0

−βγ (sin (βα2L2) + sinh (βα2L2)) βγ (cos (βα2L2) − cosh (βα2L2)) 0 0 −1 −1

−E1I1(βγ)2 (cos (βα2L2) + cosh (βα2L2)) −E1I1(βγ)2 (sin (βα2L2) + sinh (βα2L2)) E2I2 −E2I2 0 0

E1I1(βγ)3 (sin (βα2L2) − sinh (βα2L2)) −E1I1(βγ)3 (cos (βα2L2) + cosh (βα2L2)) 0 0 E2I2 −E2I2

0 0 − cos (α2L2) cosh (α2L2) − sin (α2L2) sinh (α2L2)
0 0 sin (α2L2) sinh (α2L2) − cos (α2L2) cosh (α2L2)






A1

A3

B1

B2

B3

B4




= {0} .

(10)

Substituting ψs = αs2L2 and s = 1,2, . . . ,∞ Equation (10) can be expressed as



cos (βψs2) − cosh (βψs2) sin (βψs2) − sinh (βψs2) −1 −1 0 0

−βγ (sin (βψs2) + sinh (βψs2)) βγ (cos (βψs2) − cosh (βψs2)) 0 0 −1 −1

−(βγ)2 (cos (βψs2) + cosh (βψs2)) −(βγ)2 (sin (βψs2) + sinh (βψs2)) κ −κ 0 0

(βγ)3 (sin (βψs2) − sinh (βψs2)) −(βγ)3 (cos (βψs2) + cosh (βψs2)) 0 0 κ −κ
0 0 − cos (ψs2) cosh (ψs2) − sin (ψs2) sinh (ψs2)
0 0 sin (ψs2) sinh (ψs2) − cos (ψs2) cosh (ψs2)






A1

A3

B1

B2

B3

B4




= {0} . (11)

A Matlab™ program is used to find the eigenvalues of
this matrix for given κ, β, and γ. The length of the fiber
is varying by etch increment in the program, and the
obtained eigenvalues (ψs2) of matrix in Equation (11) are
the natural frequencies of the system, representing different
modal frequencies of the probe at each fiber length.

B. Lumped absorber model

Generally, the tuning fork tine is excited with an applied
distortion characteristic of the first mode shape for lateral
vibration in the plane of the two tines. Theoretically, an
excitation force distributed along the tine corresponding to this
mode shape will excite only modes with single node lateral
deflection. Because the system to be modeled comprises the
tuning fork tine with a relatively small fiber attached (in
practice, with a small amount of epoxy adhesive) at the free
end, to a first approximation, the tine can be modeled as a
single degree of freedom system. Assuming that the attached
fiber has a little influence on the tine, it is reasonable to expect
that the fiber will only have major significance on the tine
response if the modes of the fiber are correspondingly close
to that of the tine. Indeed, if the fiber attached to the tine has a
coincident eigenvalue, it can act as an absorber. To understand
the expected behavior of a fiber probe as a function of fiber
dimensions (later evaluated using electrochemical etching),
a lumped model of the complete probe system is shown in
Figure 2.

The various parameters of this model are given in Table I.
Generally, values for the equivalent stiffness and mass

of the fiber elements are chosen to result in similar modal
frequencies. Damping coefficients are more difficult to assess.
For tuning fork tines in air, experience shows Q values
ranging from a few hundred up to a few thousand. The
fibers are near to ideal being essentially bonded to the
ends of the tines and extending freely. Hence a low value
for the intrinsic modal damping has been assumed. For
simplification of computing, each mode is assumed to have
a similar damping ratio for which free vibration expo-
nential decay will be proportional to the modal frequency

(i.e., damping proportionate to stiffness in modal analysis
models).18

For the tuning fork tine undergoing a first mode oscil-
lation, Rayleigh’s method produces a reasonable estimate of
the natural frequency. For this method the Rayleigh’s quotient
can be derived by assuming a deflection shape corresponding
to the deflection of the beam due to a load at the free end. In
this case, the stiffness at this free end, k f , can be derived from
the equation

k f =
3E f I f

L3
f

, (12)

I f =
w f t3

f

12
.

All symbols and their values used for theoretical calculation
are defined in Table II. Additionally, it is known that the tuning
fork in its free state (i.e., with no fiber attached) has a defined
first mode frequency typically around 32 kHz (or 40 kHz in
some cases). Hence, its representation as a single degree of
freedom system can be represented by the lumped equation
from which its free-state, undamped natural frequency, ω f ,
can be expressed as

ω2
f =

k f

Mf
. (13)

TABLE I. Descriptions of mathematical parameters shown in Figure 2 and
their units.

Description Symbols Units

Tuning fork tine equivalent mass M f kg
Tuning fork tine equivalent stiffness k f N m−1 or kg s−2

Tuning fork tine equivalent damping b f N s m−1 or kg s−1

Fiber modal mass mi i = 1, . . .,n kg
Fiber modal stiffness ki i = 1, . . .,n N m−1 or kg s−2

Fiber modal damping bi i = 1, . . .,n N s m−1 or kg s−1

Tuning fork excitation y m
Number of modes used in lumped
model

n 1
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TABLE II. Description of tuning fork parameters used in equations to deter-
mine values for the parameters of the lumped model and serially connected
beams analysis, and their values used for images represented in the result
section.

Description Parameter
Value in
model Units

Width of the tuning fork tine Wf 0.0008 m
Thickness of the tuning fork tine t f 0.0004 m
Length of the tuning fork tine L f 0.004 m
Quartz elastic modulus E f 75 GPa
Second moment of area of tuning
fork

I f
1
12Wf t

3
f

m4

Damping ratio of tuning fork tine ξ f 0.001 (dimensionless)
Damping coefficient for tuning
fork tine

b f 2ξ f


k f M f N s m−1

Equivalent mass of tuning fork
tine

M f
k f

ω2
f

kg

Tuning fork tine stiffness k f

E fW f t
3
f

4L3
f

N m−1

Density of tuning fork tine ρ f 2620 kg m−3

For a given free state natural frequency the above equation can
be rearranged to give an expression for the equivalent lumped
mass. Based on these values, the damping coefficient of the
system is readily given by

bf = 2ξ f


k f Mf . (14)

In all cases x represents the modal coordinate for
displacement at the free end. For the fiber, each mode is
represented by a single degree of freedom system with energy
storage and dissipation elements. Equating the elements of the
individual modes with a discrete lumped mass it is reasonable
to assume that a system in which at the extreme stiffness
values will converge to a lumped system of comprising the
tine plus total fiber mass. From a modal equation for the fiber
as a cantilever independent of the tine (this will occur when
the fiber is acting as a perfect absorber), it is found that the
modal mass is constant for each modal coordinate while the
stiffness will increase in proportion to the eigenvalue. Based
on these assumptions, the lumped parameters can be obtained

TABLE IV. The first ten roots for lateral natural frequencies of a free can-
tilever beam.

Frequency r (αµrl)
1 1.875 104 068 73
2 4.694 091 133
3 7.854 757 438 2
4 10.995 540 742
5 14.137 168 391
6 17.278 759 532 085
7 20.420 352 251 041
8 23.561 944 901 806 4
9 26.703 537 555 518 3

10 29.845 130 209 102 88

from the eigenvalues given by

λ2
i = (αiL)4 EI

ρAL4 . (15)

Therefore,

ki = (αiL)4 EI
nL3 , me = ρAL/n, bi = 2ξi


kime. (16)

Two different fibers, i.e., carbon and tungsten are used in
the experiments for comparison with the theoretical results
(represented in Section IV). The description of two fiber
parameters and their values used in theoretical calculation
are given in Table III.

The root (αiL) are obtained from the boundary conditions
of the beam. For a free cantilever, these roots for the first ten
modes are given in Table IV. Due to the slow convergence
of modal series and sensitivity to small variations in con-
stants of subsequent simulations, the number of significant
digits provided in this table is often necessary for modal
analysis.

Equations (12)–(16) provide the necessary relationships
between the probe assembly and lumped model. The dissipa-
tion function, D, potential, U, and kinetic energy, T , for the
lumped model in Figure 2 are given by

D =
1
2

bf (ẋo − ẏ)2 + 1
2

n
i=1

bi(ẋi − ẋo)2,

TABLE III. Description of carbon and tungsten fiber parameters used in equations to determine values for the
parameters of the lumped model and serially connected beams analysis, and their values used for calculation
represented in Section IV.

Description Parameter
Value in model,

tungsten
Value in model,

carbon Units

Density of fiber ρ 19250 2250 kg m−3

Damping ratio of fiber ξi 0.000 001 0.000 001 (dimensionless)
Damping coefficient of fiber for ith
mode

bi 2ξi
√
kime 2ξi

√
kime N·s·m−1

Fiber diameter Do 75 7 µm
Equivalent mass of fiber me ρAL ρAL kg
Etched length of fiber L Varying Varying m

Area of fiber A π Do
2

4 π Do
2

4 m2

Elastic modulus of fiber E 411 235 GPa

Second moment of area of fiber I π
D0

4

64 π
D0

4

64 m4
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U =
1
2

k f (xo − y)2 + 1
2

n
i=1

ki(xi − xo)2, (17)

T =
1
2

Mf ẋ2
o +

me

2

n
i=1

ẋ2
i .

Lagrange equation provided below is used to obtain the equa-
tions governing motion for the model. Therefore equations in
(17) are substituted in the Lagrange equation,17–19

d
dt
∂T
∂q̇i
− ∂T
∂qi
+
∂D
∂q̇i
+
∂U
∂qi
= 0. (18)

Correspondingly, the equations governing motion of this
system are given by

Mf ẍ0 + *
,
bf +

n
i=1

bi
+
-

ẋo + *
,
k f +

n
i=1

ki+
-

xo

+

n
i=1

kixi −
n
i=1

bi ẋi = bf ẏ + k f y (19)

[me ẍi + bi (ẋi − ẋo) + ki (xi − xo) = 0]
(i = 1, . . . ,n).

Figure 3 is a linear system diagram relating the output
displacement of each coordinate for which y is the displace-
ment generated by the input electrical voltage that causes a
static deflection closely approximating the shape of the first
mode of the tuning fork tine. xo represents the displacement of
the tuning fork tine, and xi represents the displacement of the
fiber in its i-th mode. The steady stated frequency responses
of the individual coordinates of this system can be obtained
using the assumed solutions

y = Ae jωt,

xo = Hoy( jω)y,
xi = Hiy( jω)y.

(20)

Substituting (20) into (19) and rearranging yield an expression
for the steady state frequency response at coordinates x given
by

Hoy ( jω) = xo

y
=

k f + jωbf



−Mfω
2 + jω *

,
bf +

n
i=1

bi
+
-
+ *
,
k f +

n
i=1

ki+
-
· · ·

−
n
i=1




ki + jωbi

(
1 + j2ξi ωλi

)
(
1 − ω2

λ2
i

)
+ j2ξi ωλi






, (21)

Hiy ( jω) = xi

y
=




ki + jωbi

(
1 + j2ξi ωλi

)
(
1 − ω2

λ2
i

)
+ j2ξi ωλi




Hoy ( jω) . (22)

A Matlab code is developed to compute these frequency
response functions as the fiber length is shortened. In practice
for a tuning fork based probe, it will be the tine displacement
that is sensed and therefore will be measured as the frequency
response of the probe, see Section IV C.

III. OVERVIEW OF EXPERIMENTAL APPROACH

Fiber probes are fabricated by manually aligning the fiber
and tuning fork tine under an optical microscope using a multi-
axis micrometer driven stage. Once aligned the tungsten and

FIG. 3. Input-output linear system model. For the probe demonstration.

carbon fibers are attached by high strength epoxy (Norland
optical adhesive #61). Figure 4 shows a 75 µm diameter
tungsten fiber glued to the upper tine of a quartz tuning
fork.

An electrochemical etching apparatus is used for precise
material removal for the purpose of controlled shortening of
the length or diameter reduction of the fiber. The etching

FIG. 4. Photograph of 75 µm diameter tungsten fiber attached to the upper
tine of tuning fork along with the tine axis.
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FIG. 5. An image of etching apparatus used for mass removal of fibers. A voltage applied across the carbon rods (cathode) and tungsten fiber (anode) that
creates a current through the electrolyte that is measured to calculate the mass removal.

FIG. 6. Theoretical calculation of frequency as a function of length of fiber
for first ten resonant modes obtained from theoretical model for two serially
connected beams (carbon probe).

FIG. 7. Three visible modes of carbon fiber with 7 µm diameter, (a) third
mode with length 2.4 mm, (b) fourth mode with length 3.3 mm, and (c) fifth
mode with length 4.3 mm. The theory model predicts these lengths when the
natural frequencies of fiber collide with the tine frequency.

solution consisted of deionized water (15.3 MΩ cm resistivity)
with a 1 molar solution of potassium hydroxide (KOH).
Mass was removed from the probes in small increments (5–
10 µg) and measured from the electrode charge transfer during

etching (using chronocoulometry). Figure 5 shows the etching
experimental setup. Voltage is applied across the carbon rods
and the probe fiber. Current through this cell (i) is in series with
a resistor (Rref ) that provides a voltage (VR) that is amplified
(by factor of G which generates VO). This output voltage is
then integrated to measure the amount of charge (q) from
which mass removal is calculated. For the conditions of these
experiments, 1 tungsten atom is removed for every 6 electrons
through the cell. More details about the development of the
etching instrument is presented in Ref. 20.

After shortening the length (or diameter) of the fibers,
a lock-in amplifier is used to generate a frequency sweep to
obtain the new frequency response of the probe.

IV. RESULTS

Results presented in this section illustrate the correlation
between the two theoretical approaches with experimental
data and FEA results. First, the result of two beams seri-
ally connected method, predicting the behavior of probes
versus the fiber varying length and diameter compared
with experimental data is represented. Next, the amplitude
and phase frequency response of the probe obtained from

FIG. 8. Theoretical calculation of frequency as a function of length of fiber
for first ten resonant modes obtained from theoretical model for two serially
connected beams (tungsten probe).
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TABLE V. Natural frequencies of tine obtained from theoretical calculation demonstrating its behavior acting as clamped-clamped beam.

Mode (r)
Natural frequencies,

simulation (kHz)

ωr
ω1
=

α2
r

α2
1

for

clamped-pinned beam
Natural frequencies,

clamped-pinned beam (kHz)

ωr
ω1
=

α2
r

α2
1

for

clamped-free beam
Natural frequencies,

clamped-free beam (kHz)

f1 20 1.0 20 1.0 20
f2 100 3.24 64.8 6.26 125.2
f3 275 6.76 135.2 17.54 350.8
f4 530 11.56 231.2 34.38 687.6
f5 875 17.64 352.8 56.84 1136.8

lumped absorption model is illustrated. Finally, the natural
frequencies of probes and their modes shapes obtained from
FEA simulation and the comparison with experimental data
are provided.

A. Varying length

Figure 6 illustrates the first ten modes of the carbon probe
obtained from the theory for lateral vibration of two beams
serially connected, Section II A. In this figure the asymptotic
loci of markers represented with blue dots show the modes
of the probe which demonstrates the natural frequencies
relationship with length of the fiber. The asymptotic lines
represented with pink circles correspond closely to the natural
frequencies for the carbon fiber modeled as a single cantilever
beam. The consistency between these two lines indicates
that the carbon probe is behaving similar to a cantilever
beam.

Oscillation of carbon fiber with 7 µm diameter attached
to tuning fork shows a clear illustration of modal frequencies.
The photograph of these observations (obtained experimen-
tally) for third, fourth, and fifth modes is shown in Figure 7
as an illustration.21

Figure 8 shows the frequency-fiber length plot for the
tungsten probe. In this figure, the difference between lines
with blue dots and pink circles is more significant than the one
depicted in Figure 6. It is speculated that since the tungsten
fiber has larger diameter and is heavier than the carbon fiber,
it therefore results in the probe deviating further from simple
cantilever type behavior. Generally, for “touch” sensitivity, the
probe length is optimal when the fiber oscillates at maximum

FIG. 9. Experimentally measured frequency response of a tungsten probe
sequentially etched to different lengths.

(or near to maximum) amplitude. This corresponds closely to
the zeros in the frequency response plot. Not coincidentally,
these are also located in a region where the probe, and closely
related independent fiber, frequencies coincide closely to that
of the independent tine first mode resonance. It might be
expected that the fiber will have a node at the attachment
point at the tip of the tine at which point it will act as
an absorber. Consequently, under these combined favorable
conditions, the energy supplied to the tine will be maximally
transferred to the fiber that is typically excited in a much higher
mode. For a simple cantilever, the maximum total potential,
V , and kinetic energy, T , associated with oscillation of the
fiber are

V =
EI
2l3

∞
s=1

(αµsl)4q2
s,

T =
ρAl
2

∞
s=1

q̇2
s =

(
EI
2l3

) ∞
s=1

(αµsl)4q2
s,

(23)

where qs represents the modal (or normal) coordinate
associated with the sth mode. In fact, under these optimal
conditions, the fiber may be considered to be an optimal
absorber for the tine.

Also shown in Figures 6 and 8 are eigenvalues of the
matrix that, while exhibiting asymptotic behavior over short
changes in length, these then jump to form a series of short
segments that correspond to a nearly constant frequency.
These lines correspond to the natural frequencies of the tuning

FIG. 10. Theoretical calculation of eigenvalues for an 8.16 mm long tungsten
fiber as a function of varying diameter.
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FIG. 11. (a) Frequency response of tungsten fiber obtained from experimental testing (b) subplot of 14-a demonstrating the linear relationship of modal
frequencies with fiber diameter.

fork tine in different modes, for which four of them are
highlighted in Figure 6. For the longer fiber lengths, values
for the first five frequencies have been extracted from these
theoretical plots, and the ratio between them is compared
with different cantilever beam types, see Table V. The ratio
of the modal frequencies shows that the tuning fork tine is
behaving as beam with frequency being between clamped-
pinned and clamped-free conditions. One side of the tine is
assumed to be clamped as it is stated in the boundary condition
(Equation (3)). The other end of the tine will experience
varying dynamic forces that will depend on the free natural
frequencies of both beams. For high frequencies, forces on
the tine due to fiber mass and the second moment of mass will
be relatively large, effectively acting to a pin the “free” end of
the tine. For lower frequencies however, the effect of the fiber
mass is less significant thus, the fiber forces at the end of the
tine become less significant and it responds more closely to
being free at the end.

Figure 9 shows the experimentally measured frequency
response in terms of magnitude and frequency as a function
of the length of the tungsten fiber. The initial length of the
fiber used was 14.11 mm after which it was etched down to
0.83 mm in non-equal steps (due to difficulties associated
with controlling the immersed length of the fiber tip in
the electrolyte solution). It can be noticed that the natural

FIG. 12. Amplitude frequency response of the tuning fork tine, Hoy as
a function of tungsten fiber length based on lumped model approximation
(tungsten probe).

frequencies of the probe at different modes are changing
asymptotically with respect to the length of the fiber similar to
the observations obtained from theoretical graphs in Figures 6
and 8. This will be further discussed in Section IV C.

B. Varying diameter

Another study has been carried out to examine the effect
on probe’s natural frequency of changing the fiber diameter.
Figure 10 plots the theoretical eigenvalues for a tungsten fiber
of length 8.16 mm attached to a tuning fork tine. Different
colors in the graph show different modes of the probe and
demonstrate a linear relationship with varying fiber diameter.

This can be predicted from the vibrating cantilever beam
equations. The natural frequencies of a cantilever beam is
obtained from

fn =
(αnl)2

2π


EI

mL3 . (24)

Substituting I and m for a cylindrical rod yields

fn =
(αnl)2

2π

 E
(
πD4

64

)
(
ρπD

2

4 L
)

L3
=

(αnl)2D
8πL2


E
ρ
. (25)

FIG. 13. Phase frequency response of the tuning fork tine as a function of
attached tungsten fiber length based on lumped model approximation.
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FIG. 14. Amplitude frequency response of the fiber, Hi y for i = 1, 2, 3, and 4, respectively, as a function of fiber length based on the lumped model
approximation (tungsten probe).

FIG. 15. Fifth oscillating mode shape of carbon probe of 4.3 mm fiber length
obtained from (a) FEA, (b) experimental testing.

FIG. 16. FEA result showing modes shapes of tungsten probe of 5.5 mm
fiber length oscillating in (a) third mode and (b) fourth mode.

Therefore, the natural frequency is expected to vary linearly
with the diameter of the rod and hyperbolically with length.
The result of the experimental test where a tungsten probe
(8.16 mm long fiber attached to tuning fork) is etched in step
of 5 µg (decreasing diameter) is shown in Figure 11.

C. Lumped system model

Figure 12 represents the amplitude frequency response
plot showing the magnitude of Hoy (Equation (21)) as a
function of length of a tungsten fiber of radius 37.5 µm.

The phase response of Hoy as a function of frequency
and diameter is shown in Figure 13.

Similarly, the amplitude frequency response of individual
lumped modes Hiy (Equation (22)) is plotted relative to the
length of the fiber. These plots for the first four modes of a

TABLE VI. First five natural frequencies of the tungsten probe (fiber
length= 5.5 mm) obtained from theoretical calculation and FEA.

Mode (r)
Natural frequencies, from theory

(Hz)
Natural frequencies from FEA

(Hz)

f1 1 801.5 158 0
f2 11 289.6 970 9
f3 31 611.3 314 17
f4 61 945.4 557 68
f5 101 332.0 906 07

tungsten probe are shown in Figure 14. The same asymptotic
lines represented in Figures 6 and 8 are noticeable in these
images. Most significantly, and as expected from this lumped
model approximation, the response for each fiber dominates
while, because all coordinates of the system response share
common roots, the influence of the surrounding system
remains. However, it is apparent that the resonant peak for
each fiber mode passes through the location of the zero in the
tuning fork response.

D. Finite element analysis

A frequency study using FEA software available in
SolidWorks™ has been carried out on a 3D solid model of the
probes. Figure 15 shows the fifth mode shape of the oscillating
carbon probe acquired from FEA, and its consistency with the
experimental image.

The third and fourth mode shapes of tungsten probe with
5.5 mm fiber length obtained from an FEA study are shown
in Figure 16.

The natural frequencies of first five modes for tungsten
probe (fiber length = 5.5 mm) acquired from theoretical
calculation (two beams serially connected method) and FEA
is represented in Table VI, which represent a good correlation
between two approaches.
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It is noted that the theoretical model predicts frequencies
that are higher than of those obtained from FEA. Two possible
sources of this difference are mesh size used and the fact that
the fiber bonds a short distance on to the end of the tine.
Consequently, the additional mass due to the short length of
fiber on the end of the tine is not included in the theoretical
model. Such a reduction in mass would be expected to result
in higher natural frequencies.

V. CONCLUSIONS

Micro-scale oscillatory probes are widely used in
metrology, manufacturing, and assembly for precision appli-
cations. Two beams serially connected and lumped model
approximate vibration models are developed in this pa-
per for detailed understanding of the dynamics of these
probes.

Experiments have been carried out with tungsten and
carbon probes where the fiber length or diameter was elec-
trolytically etched and their frequency response was acquired.
The results from theoretical models and the experimental data
displayed natural frequencies of probes to retain an asymptotic
relationship with the fiber length and a linear relationship
with the fiber diameter. Additionally, the tuning forks in these
probes can be modelled with eigenvalues varying between
clamped-pinned and clamped-free beams that depend on how
closely the fiber resonance (a function of the fiber length
or diameter) coincides with that of the tine. Moreover, a
frequency study in SolidWorks predicted the probe mode
shapes and its natural frequencies which were consistent with
the data obtained from experiments, hence it rules out the
necessity of complex FEA studies.

A key functional characteristic of these probes is the
matching of the fiber modes to that of the first mode of the
tine. Generally, the electrode pattern on the tuning fork tines
is designed to excite the fundamental mode. Consequently,
this excitation shape is not suited for exciting other probe
modes. When the frequencies of fiber modes that are not
closely matched to that of the tine, even though they may
independently have a relatively high Q value, the tine
excitation, and therefore the fiber, will have a low amplitude.
The approaching and receding fiber modes are visible in
Figure 10 for tungsten fiber lengths at 3 mm and 13 mm.
When the fiber length contains a mode close to the tine natural
frequency, the energy of excitation is transferred into the fiber
that then acts as an absorber for the tine mode, resulting in a
zero for the frequency response of the tine (i.e., the frequency
response that is measured by these types of probe).

While the focus of this study is the analysis of probes
undergoing planar oscillations, in practice there are additional
modes resulting in out-of-plane motion. Planar analysis is
justified by the fact that the excitation force is applied only in
this plane and that the results from both theory and experiment
are consistent in terms of pole and zero locations in the
probe response. Non-linear effects have been observed, more
commonly occurring with high Q systems or those having
measurable assembly errors such as misalignment between
the axis of the fiber and that of the tine. Additionally, when
these probes are used as contact sensors, the dynamics of
the interaction is typically chaotic. Both of these topics,
while interesting, are outside of the scope of this paper.
However, there are applications for which multi-directional
oscillators for contact sensing applications are of interest,
particularly in the field of micrometer-scale touch-sensors
for coordinate measuring machines.22–25 It is expected that
the technique for optimizing performance for the planar
probe could be similarly determined for any resonant probe
designs comprising slender elements attached to an oscillator
operating at fundamental or higher modes.

While the probes of this study might oscillate in a single
plane, the frequency response does change when the probe is
brought into proximity with a surface having any orientation
relative to the direction of oscillation. Studies to quantify this
orientation dependence have yet to be undertaken. Additional
studies are also necessary to determine the optimal parameters
for probe designs in terms of subsequent signal sensitivity as
a function of proximity to a specimen surface. Sensitivity
is also complicated by the choice of excitation parameters
(amplitude, frequency, and phase) in the region of the resonant
peak. Studies to quantify these parameters are planned,
ultimately aimed at achieving optimal performance in terms
of bandwidth and signal to noise ratio of micro-resonator
probes.
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APPENDIX: EQUATIONS FOR GENERATING THE MATRIX GOVERNING MOTION

Dropping the s subscript, Equations (4) and (5) can be expressed in the form

y1(x1,q1)
q1

= A1 (cos (βγα2x1) − cosh (βγα2x1)) + A3 (sin (βγα2x1) − sinh (βγα2x1)) , (A1)
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y2(x2,q2)
q2

= B1 cos (α2x2) + B2 cosh (α2x2) + B3 sin (α2x2) + B4 sinh (α2x2) . (A2)

Satisfying the rest of the boundary conditions is not as straightforward. Consider each of the conditions in Equation (3) in turn

y1(L1) = A1 (cos (βα2L2) − cosh (βα2L2)) + A3 (sin (βα2L2) − sinh (βα2L2)) = y2(0) = B1 + B2, (A3)

dy1(L1)
dx1

= A1βγα2 (− sin (βα2L2) − sinh (βα2L2)) + A3βγα2 (cos (βα2L2) − cosh (βα2L2)) = dy2(0)
dx2

= B3α2 + B4α2, (A4)

or

A1βγ (− sin (βα2L2) − sinh (βα2L2)) + A3βγ (cos (βα2L2) − cosh (βα2L2)) = B3 + B4,

E1I1
d2y1

dx2
1

������x1=L1

= E1I1(βγα2)2


−A1 (cos (βα2L2) + cosh (βα2L2)) . . .
. . . − A3 (sin (βα2L2) + sinh (βα2L2))


= E2 I2

d2y2

dx2
2

������x2=0

= E2I2α
2
2 [−B1 + B2] , (A5)

or

E1I1(βγ)2


−A1 (cos (βα2L2) + cosh (βα2L2)) . . .
. . . − A3 (sin (βα2L2) + sinh (βα2L2))


= E2I2 [B2 − B1] ,

E1I1
d3y1

dx3
1

������x1=L1

= E1I1(βγα2)3


A1 (sin (βα2L2) − sinh (βα2L2)) . . .
. . . A3 (− cos (βα2L2) − cosh (βα2L2))


= E2I2

d3y2

dx3
2

������x2=0

= E2I2α
3
2 [−B3 + B4] , (A6)

or

E1I1(βγ)3


A1 (sin (βα2L2) − sinh (βα2L2)) . . .
. . . A3 (− cos (βα2L2) − cosh (βα2L2))


= E2I2 [−B3 + B4] ,

d2y2(L2)
dx2

2

= −B1α
2
2 cos (α2L2) + B2α

2
2 cosh (α2L2) − B3α

2
2 sin (α2L2) + B4α

2
2 sinh (α2L2) = 0,

d3y2(L2)
dx3

2

= B1α
3
2 sin (α2L2) + B2α

3
2 sinh (α2L2) − B3α

3
2 cos (α2L2) + B4α

3
2 cosh (α2L2) = 0, (A7)

or

−B1 cos (α2L2) + B2 cosh (α2L2) − B3 sin (α2L2) + B4 sinh (α2L2) = 0,
B1 sin (α2L2) + B2 sinh (α2L2) − B3 cos (α2L2) + B4 cosh (α2L2) = 0.

Equations (A3)–(A7) are combined and written in a matrix form which represents the matrix governing motion of the system.
The eigenvalues of this matrix are the natural frequencies of the probe.
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