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1. Introduction

Heterodyne displacement interferometry is a widely accepted methodology used for

high resolution optical metrology [1, 2, 3]. Optical heterodyne interferometers are

typically capable of measurements with sub-nanometer resolution and nanometer-

level uncertainty, that is, if the proper precautions are taken to ensure a confined

environment and if a sufficiently frequency stabilized source is used [4, 5]. Although

these levels of resolution in translational motion are readily achievable, limitations still

exist in the measurement and calibration of multiple degrees of freedom. Commercial

interferometers generally only monitor one or at most two degrees of freedom during a

single measurement, and in doing so they typically utilize multiple interferometers and

multiple retroreflectors or interferometer architectures with multiple passes that require

a larger target to accommodate laser spots.

The limitations for simultaneous calibrations are further exacerbated for

nanopositioning systems, such as the system shown in Figure 1. Nanopositioning

systems are typically piezoelectric driven stages that exhibit 10’s to 100’s of micrometers

of motion with nanometer level or lower minimal step sizes. In many stages, the

nanopositioning system has an embedded sensor used for feedback control that is

typically calibrated with a laser interferometry system. Using larger retroreflector(s)

for linear and angular measurements or large mirrors to accommodate multiple

measurement spots on a target can adversely affect the calibration of the nanopositioning

system. Most notably, errors can occur in dynamic measurements where the mass of the

target lowers the natural frequency considerably and introduces static offsets [6]. Also,

offsets between the internal measurement axis and the calibration axis or functional

point in the system can cause Abbé errors [7].

In this work, we address these deficiencies by developing a compact interferometer

Figure 1. The InSituTec X20 nanopositioning stage used in this work. Calibration

was needed at a position above and offset from the internal displacement sensor.
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Figure 2. Depending on the application, the calibration may be recorded off-axis,

which can introduce Abbé errors if there are rotational motions of the stage. In this

work, we can calibrate linear and angular motions of the measurement point of interest

with a small target.

capable of measuring three degrees of freedom simultaneously using a single

measurement beam incident on a small plane mirror target (<5 mm diameter). The

three degrees of freedom measured are the linear displacement along with changes in

pitch and yaw. The small target allows for a precise functional point to be known when it

does not coincide with the internal measurement axis, as shown in Figure 2. The added

angular measurements allow for performing simultaneous coordinate transformations

from the functional point to the internal sensor and the small target imparts minimal

added mass onto the system.

Other displacement interferometers capable of measuring multiple degrees of

freedom simultaneously include the system developed for use in the Laser Interferometer

Space Antenna (LISA) [8, 9], the 6-degree of freedom optical sensor for machine

tool error characterization [10] and the multi-degree of freedom measuring system

developed specifically for coordinate measurement machine error calibrations [11]. The

interferometer architecture presented here was developed with a similar design to that

used in the LISA project, but has been condensed to a compact size based on Joo-

type interferometer architectures [12, 13, 14]. The system is ideal for high resolution

calibration because, like other interferometers, it has a high dynamic range, high signal-

to-noise ratio, and direct traceability to the meter [15]. In this work, we present an

overview of the interferometer, its layout, and working principle. Additionally, we detail

how differential wavefront sensing (DWS) is used to measure displacement, pitch, and

yaw, including some scaling information for enhancing the sensitivity and we validate

this compared to a traditional angle interferometer. We then demonstrate calibration of

a nanopositioning stage where the functional point is offset from the internal metrology

axis and present data on positioning repeatability and linearity.

The interferometer discussed in this work uses a slightly different approach to

measure DWS readout signals. Previously reported DWS technology [8, 9, 16, 17, 18]

uses a quadrant photodetector similar to ours, however, all reported results have utilized
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a beam size much smaller than the quadrant detector active area. Our work incorporates

a beam size that is larger than the 2x2 array of photodetectors, thereby simplifying

many alignment issues and maximizing signal-to-noise ratio in all four quadrants. Each

photodiode in the quadrant photodetector is separated by a small gap that has resulted

in non-linearity, crosstalk and drift of the output signals in previous work. Our research

has shown that overfilling the detector negates the effects of the small gap because its

size is so small compared to the overall beam diameter. Furthermore, when using beams

smaller than the overall detector size, spatial variations in photodiode responsivity must

be measured and compensated because the measurement beam walks across the detector

when the measurement mirror rotates. Overfilling the detector effectively averages these

small variations so that spatially varying responsivity becomes negligible – at least in

achieving the resolution limits presented in this work.

2. Working Principle

The compact, fiber delivered interferometer can be separated into two different sections

– first, the fiber delivered laser source and second, the interferometer architecture and

sensors. As shown in Figure 3, light from a stabilized laser source is split equally and

each beam is directed towards two acousto-optic modulators (AOMs) which are used to

create the heterodyne frequency. The AOMs are driven with slightly different RF signals,

ultimately modulating the light to produce interference at that frequency difference. The

RF signals used in the experiments for this research were 80.00 MHz and 80.07 MHz,

which result in a heterodyne carrier frequency of 70 kHz after interference occurs. After

passing through the AOMs, the first order upshifted beams are then both fiber-coupled

into polarization maintaining fibers which are prone to mechanical and thermal stress

induced phase shifts. The artificial phase shifts, denoted by θ1 and θ2, are eventually

accounted for by using an optical reference after the fiber launch into the interferometer.

Previous research has shown that an optical reference placed after the fiber launch

will negate any fiber induced doppler shifts in addition to false frequency modulations

Figure 3. Full schematic of the compact three degree-of-freedom interferometer. (BS:

50/50 non-polarizing beamsplitter, AOM: acousto-optic modulator, FC: fiber coupler,

PD: photodetector, M: mirror, DWS: differential wavefront sensing; color online)



Compact three degree-of-freedom displacement interferometry 5

which may occur from AOM drifts [14]. It is evident in Figure 3 that the heterodyne

frequency is created from the interference of the spatially separated beams from each

fiber launch site. Both input beams will have their own associated frequency drift as

a result of their individual AOM drifts and PM fiber stress fluctuations, however, once

interference occurs artificial frequency drifts from both fiber outputs will be common

to both detection sites and thus cancel. Nonetheless, three common fiber perturbations

and their impact on the inferferometer were examined. The results of which can be seen

in Figure 4 in the time domain and in Figure 5 in the frequency domain. The three

perturbations examined were an applied vibration moving the fiber, thermal stressing

by breathing on the fibers, and impact loading by tapping on the fibers. The results

in Figure 4 show that none of the perturbations significantly affect the noise floor of

the interferometer. Furthermore, when examined in the frequency domain, the noise

spectra are essentially identical. The frequency domain results were recorded using a

300 Hz low-pass filter which is designated with a dotted line on the figure.
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Figure 4. Three common perturbations to polarization maintaining fibers and their

effect on interferometric measurements were examined. In the time domain, the noise

floor was not significantly affected. (Vib: moving the input fibers, Therm: Thermal

excitation by repeatedly breathing on fibers, Tap: Impact loading by repeatedly

tapping fibers; color online)

0 100 200 300 400 500

0.01

0.02

0.03

0.04

0.05

Frequency [Hz]

D
is

pl
ac

em
en

t [
nm

]

 

 

0 100 200 300 400 500

0.01

0.02

0.03

0.04

0.05

Frequency [Hz]

D
is

pl
ac

em
en

t [
nm

]

Vib
Therm
Tap
Orig

Figure 5. The frequency spectra of three fiber perturbations showed a negligible

increase in amplitude of the noise spectra. These results were recorded using a 300 Hz

low-pass filter which is designated with a dotted line. (Color online)

Referring to Figure 3, after the two optical beams are collimated into the

interferometer and aligned to be parallel, the top beam (f1 + θ1) is split at the top
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non-polarizing beamsplitter (BS) where 50% of the light transmits and reflects from a

reference surface. The reflected light from the reference surface is then reflected at the

top BS and interferes with light from bottom BS. Light from the bottom input beam

(f2 + θ2) is split at the bottom BS and the reflected light is directed to interfere with

the f1+θ1 beam that returns form the reference surface in the top BS. This interference

signal is detected and is used as the optical reference. Similar to the optical reference,

light from the bottom beam (f2 + θ2) that is transmitted in the bottom BS is sent to

the measurement mirror where it reflects back through the bottom BS and is directed

to the quadrant detector. This measurement beam interferes with f1+ θ1 light from the

top collimator that is reflected in the top BS and transmits through the bottom BS.

Figure 6. The multi-DOF prototype developed for industrial metrology applications.

The interferometer optics are mounted to an invar baseplate to minimize thermal drift.

One of the main differences between the Joo-type architecture and traditional

interferometers is the measured phase change is the sum of the optical path length

changes for both the reference and measurement arms whereas traditionally it is the

difference between measurement and reference optical path lengths. In previous work,

this has been exploited to double the measurement resolution. However, modern

electronic phase interpolation renders this unnecessary. The Joo-type architecture does

allow for compact heterodyne interferometers that need minimal components and no

polarizing components. Thus, it is more beneficial to have a short, stable optical path

in the reference arm, rather than equalizing the path length to the measurement arm.

As shown in Figure 6, the fixed reference surface is mounted to an invar (low thermal

expansion material) baseplate, to minimize thermal drift in the interferometer. Wedged

fused silica beamsplitters were used to minimize ghost reflections in an effort to eliminate

periodic error [19, 20, 21]. Alternatively, as shown in Figure 7, the interferometer can

be made into a single optical assembly with the reference surface directly coated on

the assembly. Here, anti-reflection coatings are used to minimize ghost reflections and

periodic error.

The compact interferometer utilizes differential wavefront sensing (DWS) to

measure target mirror displacement and changes in pitch and yaw. The technique uses a

quadrant detector to measure four spatially separated interference signals within a single

optical interference beam. Based on the geometry of the detector and the interference
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Figure 7. A schematic of the compact 3-DOF interferometer using a single

interferometer optic and coating as the reference mirror surface. (Beams are split

and offset for clarity.)

phase in each quadrant, the displacement and changes in target pitch and yaw can be

decoupled and measured. The concept of DWS is a relatively new technology with a

growing variety of applications, mainly in the area of optical alignment [22, 23, 24, 25].

The LISA team expanded DWS for a three degree-of-freedom metrology package that

has been extensively outlined and characterized [16, 17, 18] including the performance

of a custom phasemeter [26, 27]. Figure 8 provides insight into the operating principal

of DWS while Equation 1 describes the required post-processing for three degree-of-

freedom measurements.

Figure 8. A schematic of a rectangular quadrant photodiode used for differential

wavefront sensing with incident tilted interfering wavefronts. The quadrants are labeled

A through D. To accurately predict the readout of rotational signals, the Gaussian

profiles of interfering beams must be considered as will be discussed later.

The quadrant detector which records DWS signals outputs irradiance values from

a 2x2 photodetector array which are then post-processed. Pitch and yaw measurements

are obtained using weighted phase averages over symmetrically adjacent pairings of

detector elements while overall displacement is a result of the total average phase over

all four detectors. The three values are

zd ∝
φA + φB + φC + φD

4
(1)
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Pitch ∝ (φA + φB)− (φC + φD)

ΓP

(2)

Y aw ∝ (φA + φD)− (φB + φC)

ΓY

, (3)

where φ represents detected phase of quadrant A, B, C, or D (see Figure 8), and ΓP and

ΓY represent a scaling factor in pitch and yaw measurements that is primarily dependent

on beam size, detector size, and beam wavefront.

3. Differential Wavefront Sensing

For rotational measurements, an accurate prediction of the scaling factors designated by

ΓP and ΓY in Equations 2 and 3 is not trivial. The Gaussian nature of both interfering

beams must be considered to predict accurate results. Hechenblaikner [28] demonstrated

an analytical model that can be used to simulate the DWS signals which were cross-

calibrations against a commercial hexapod tip/tilt system to within 10% error [18].

The model presented by Hechenblaikner assumes the incident interfering beams are

much smaller than the overall size of the quadrant detector. The predicted coupling

parameter relating DWS readout to the actual physical rotation taking place, φ, is

given by

Dφ =
d(DWSφ)

dφ
=

√
2π

4ωeff

λ
(1− ztm

Rm

)F (σ), (4)

where ωeff is the effective beam waist related to measurement and reference beam waists

by 2/ω2
eff = 1/ω2

m+1/ω2
r , λ is the interferometer wavelength, ztm is the lever-arm length

which represents a small translation in relative positions between the measurement and

reference beams when the measurement mirror rotates, Rm is the measurement beam

curvature and F (σ) is given by

F (σ) =
1√
2

√

√

√

√

1 +
√
1 + σ2

1 + σ2
. (5)

The F (σ) term depends on a nonlinearity parameter, σ, which is dependent on the beam

diameter and relative wavefront curvature of the interfering beams and is given by

σ =
kω2

eff

4Rrel

. (6)

In Equation 6, Rrel is related to the radii of the reference and measurement beams by

1/Rrel = 1/Rr−1/Rm and k = 2π/λ is the wavenumber. Refer to [28] for a full derivation

of the analytical expression. The alternative method for analytical DWS calibration

predicts rotational scaling using beams of similar size to the quadrant detector [29].

The major difference between these models is that previously, limits of infinity were

used for the irradiance integrations (under the assumption that the incident beams are

much smaller than the detector and a circular quadrant detector) while we used finite

limits of integration to represent only the portion of the interfering beams detected by
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the quadrant detector active area. Our analytical expression enables the use of beams

of similar size to the quadrant detector thereby simplifying alignment and maximizing

signal-to-noise ratio in each quadrant. A schematic demonstrating this difference is

shown in Figure 9. Furthermore, our expression is generalized to allow the use of

a rectangular quadrant detector. Both derivations assume the interfering beams are

described by a fundamental-order Gaussian, however we also include the Gouy phase

shift. The measurement beams in this model are described by

E(r) = |E| ω0

ω(z)
exp(− r2

ω(z)2
− ik

r2

2R(z)
− ikz

+iζ(z) + iωt),

(7)

where r is the distance from the origin, ω(z) is the beam waist, which is defined as

the distance from the origin to 1/e electric field amplitude or 1/e2 intensity, ω0 is the

minimum beam waist (defined as ω(0)), R(z) is the radius of curvature of the wavefront,

and ζ(z) is the Gouy phase shift. These Gaussian parameters are

ω(z) = ω0

√

√

√

√

(

1 +
(

z

zR

)2
)

,

R(z) = z

[

1 +
(

zR
z

)2
]

, and

ζ(z) = arctan
(

z

zR

)

,

(8)

where zR is the Rayleigh range

zR =
πω2

0

λ
. (9)

The two interfering beams are incident on the quadrant photodetector and the total

electric field is the sum of the electric fields of the two Gaussian beams. The intensity is

proportional to the modulus squared of that electric field. Finally, the result is integrated

Figure 9. A schematic demonstrating the nominal aspect ratios of beam to quadrant

detector used by (a) Hechenblaikner [28] and (b) our model. Overfilling the detector

simplifies alignment, maximizes signal-to-noise ratio in each quadrant, and creates a

negligible contribution from the gap between detector elements.
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over the finite limits of the quadrant detector to determine the optical power on each

of the four quadrants. In order to use the previously reported analytical model[28]

it was critical to match the wavefronts meticulously in terms of angular and spatial

alignment. Our expression has been generalized to take into account the centroid

offsets from the center of the quadrant photodetector (δx and δy) to simplify alignment

procedures. Furthermore, since a measured rotation will result in a translation of the

measurement beam accross the quadrant detector, our model decouples this result using

δx2 = x0,2 +2βzm,d and δy2 = y0,2 +2αzm,d where β represents yaw of the measurement

mirror and α represents a pitch motion of the measurment mirror. In these expressions

x0,2 is the initial misalignment along the X-axis of the centroid of the measurement

beam, y0,2 is the initial misalignment along the Y-axis of the centroid of measurement

beam, and zm,d is the distance from the measurement mirror to the detector. Due to the

length and complexity of such a general expression, it has been consigned to Appendix

A.

Numerical simulations performed using our model demonstrate a significant scaling

dependence on beam waist. These simulations can be seen in Figure 10. Additionally,

the model predicts that the system will lose sensitivity with any beam waist at mirror

rotations close to ≈ 100 µrad. Although the measurements made by this system are

not linear, for smaller rotation angles they can be approximated as linear. The results

of Figure 10 assumes a square quadrant detector with a width and height of 2.5 mm,

however, the model is also heavily dependent on detector size. Figure 11 shows varying

effective lengths (the Γ terms in Equations 2 and 3) as a function of beam waist and

detector size. Using our model, we compared our 3-DOF measurements against an

industry standard angle interferometry system [30] by measuring the same micrometer

rotation stage from opposite ends, one such representative result is shown in Figure 12.
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Figure 10. A simulation of the signal measured by our interferometer at several beam

waists. The three beam waists result in a different scaling of the measured rotation.

All three also lose sensitivity at larger rotation angles, with the largest oscillating as

the angle increases (color online).
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Figure 11. A map of the effective length of a differential wavefront interferometer

designed with a range of detector sizes and beam waists. This length determines the

denominator terms in Equations 2 and 3 (color online).
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Figure 12. Using the analytical model proposed in [29], rotational scaling was

predicted to within 5% error over the full measurement range when compared against

an industry standard angle interferometer. (Color online)

The beam waists and the wavefront curvatures of the measurement and reference

beams were measured with a Shack-Hartmann wavefront sensor with a λ/50 rms

wavefront sensitivity and used in our model to derive expressions for ΓP and ΓY

from Equations 2 and 3. Using this model, the results of our angular sensitivity

agree with the commercial angle interferometer to approximately 5% over the full

measurement range, which is a 50% improvement over previously reported results

using DWS. In practice, we are limited by the air currents passing through uncommon

optical paths that cause refractive index errors. Typical shopfloor refractive index

variations are approximately 1×10−7 and since both interferometers were measuring

the same stage from approximately 100 mm away, the result is approximately 10 nm

(100 mm× 10−7 = 10 nm) of error for each interferometer. When dividing by millimeter-

scale Γ values in Equations 2 and 3, 10 nm of displacement error is amplified to single

microradian levels in rotational measurements (i.e. rotational refractive index error =

10 nm/2.5 mm ≈ 4 µrad, assuming a Γ value of 2.5 mm in Equations 2 and 3). Thus,

the fluctuations of error in Figure 12 can be reasonably attributed to refractive index.
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4. Experimental Results

Figure 14 shows preliminary results of the calibration of the InSituTec X20 stage where

the functional point is off axis from the internal capacitance-based displacement sensor,

as previously shown in Figure 2. The purpose of calibrating at this location is because

this is the desired function point where the systems should be calibrated based on a

customer specification. The internal capacitance sensor will be used for closed loop

control relative to that point.

The quadrant detector used for all measurements in this paper was made by Electro-

Optical Systems, Inc. (part number S-025-QUAD-E4/1MHz). The detector has a

2.5 mm × 2.5 mm overall active area with a gap size of less than 0.050 mm between

detector elements and a Noise Equivalent Power (NEP) of less than 1.5× 10−12 W/Hz1/2.

The responsivities of all four detectors were assumed equal. Our AOMs were made

by Isomet Corporation (model number 1250C with model number 522C-2 digital

modulation RF drivers). The AOMs were driven at 80.00 MHz and 80.07 MHz creating a

nominal heterodyne frequency of 70 kHz once interference occurs. Our data acquisition

unit was a custom FPGA-based phasemeter sold by InSituTec, Inc. connected to the

host PC through USB. The noise floor of the system is shown in Figure 13 and was

obtained by sampling at 100 kHz and applying a low-pass filter of 300 Hz.
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Figure 13. Noise floor measurements using the custom FPGA-based phasemeter

developed by InSituTec, Inc. with a 300 Hz low-pass filter implemented. Stage was

held at a constant voltage. Data axes have been offset for clarity. (Color online)

The stage was displaced using a slow sine wave under open loop control where the

pitch and yaw was monitored simultaneously. The pitch and yaw values are estimated

based on the nominal beam size and detector geometry. The interferometer’s measured

linear displacement of the target was in good agreement with the internal capacitance

sensor within the piezo stage. Figure 15 shows the deviation between the two sensors.

The two sensors were linear to within 130 nm pk-pk, which was repeatable. This

deviation between the sensors was used in a custom linearization algorithm. After

applying the algorithm, the stage is capable of holding to within 4.7 nm pk-pk over

the range of the stage. Fitting the error to a low order polynomial results in negligible

non-linearity.
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Figure 14. Preliminary testing of the 3-DOF interferometer at the X20 functional

point. The X20 nanopositioning stage was operated in open loop using a sinusoidal

voltage input and the corresponding displacement and rotational errors were recorded.

(Color online)
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Figure 15. Deviation between the internal capacitance sensor and the external custom

interferometer offset from the capacitance sensor measurement axis. The deviation

between the two was 130 nm pk-pk, which was reduced to 4.7 nm pk-pk after applying

a linearization algorithm. (Color online)
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Figure 16. Error after settling for 50 random steps of varying sizes and varying

locations throughout the work volume of the X20 stage. The x-axis designates the

initial starting position of the stage while the y-axis designates the controlled step size

from that initial location. Red error bars represent the standard deviation of the error

between the interferometer and internal sensor. The average of the error deviations is

less than 0.4 nm over all 50 random steps.

The rotational results in Figure 14 appear noisy because of a phenomenon known

as Periodic Nonlinearity (PNL) which is amplified with the use of Equations 2 and 3.
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Periodic Nonlinearity (or periodic error) is a well-known phenomenon in displacement

interferometry applications. Under the effects of PNL, a nonlinearity with a periodicity

of one cycle per 2π change in optical path length is superimposed on top of the ideally

linear output. In its simplest principles, PNL is a consequence of signal cross-talk

between different frequencies of linearly polarized beams – thereby resulting in parasitic

signals. Our developed interferometer has a nominal PNL level of 1 nm pk-pk in

translational measurements as a result of ghost reflections in the system. To show

how this effect is amplified we will assume a typical Γ value in Equations 2 and 3 of

2.5 mm. If each of the four phase readings has a 1 nm amplitude of PNL, this is amplified

to microradian levels by dividing by a millimeter scale denominator (i.e. PNL rotation

error = 1 nm/2.5 mm = 0.4 µm). For calibration purposes, this error can be removed

by calibrating over the full range and using the slope of the calibration line as shown in

Figure 17.

Figure 17. When plotting rotation as a function of stage displacement, the effects

of amplified Periodic Nonlinearity in the measured phase are evident. For calibration

purposes, this parasitic effect can be removed by calibrating over the full range and

using the slope of the calibration line. The y-axis is denoted as error to represent

unintended rotations of a stage during translation. (Color online)

Another calibration procedure performed on the stage using the displacement

interferometer was a random step test [31]. The stage was commanded to perform

50 random steps of random size within its work volume. The internal capacitance

sensor was used to control the stage’s motion while the 3-DOF interferometer was used

to monitor the performance. The settling algorithm used on the internal capacitance

sensor read the current position. If the position remained within a 10 nm displacement

window for 50 ms, the stage was deemed “settled” and a trigger signal was sent to

the interferometer to record the next 50 ms. The results of this test is shown in

Figure 16, where the error bars signify the standard deviation of the error between

the interferometer signal and stage position once the stage is deemed settled over the

50 ms window. Based on this test, we can assess the stage’s performance to determine

work volume and step size bias. Typically, if the linearization algorithm is not performed

adequately, larger steps and/or motions occurring at the edge of the work volume can

contribute larger areas. Based on these results, no discernable pattern is apparent based

on work volume nor step size, and the average standard deviation for the 50 steps was
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less than 0.4 nm.

Our results do not consider RF crosstalk between DWS readout signals because

we have used a nominal 70 kHz heterodyne carrier frequency for all presented

measurements. If a larger heterodyne frequency is to be used to discern higher doppler

shifts, RF crosstalk becomes more of an issue in the MHz regime. Furthermore, we

have also assumed that all four detector elements have the same responsivity, this

has proven to be a valid assumption given the agreement between our interferometer

and an industry standard angle interferometer. Thermal drift will affect long-term

measurements, however, all reported results were conducted over short time-frames

thereby negating this effect as much as possible.

5. Conclusions

In summary, we have presented a compact three degree-of-freedom displacement

interferometer capable of the simultaneous measurement of Z-displacement and changes

in pitch and yaw of a translating nanopositioning stage. The implementation of a

novel architecture has significantly reduced the metrology footprint of our interferometer

compared to its LISA predecessor. To achieve reliable rotational measurements, the

interferometer must be calibrated either against an additional metology tool or through

the analytical prediction of scaled DWS readout signals. If the readout signals are to be

analytically predicted, two methods have been proposed, one of which was implemented

with this interferometer to within 5% error over the full measurement range.

Using this 3-DOF interferometer we demonstrate calibration of a compact, single

axis nanopositioning system. After linearization, the capacitance sensor noise was

4.7 nm pk-pk over the full range with a standard deviation of less than 0.7 nm.

Considering the step size variation from Figure 16, we can conclude we are able to

use this interferometer to linearize the stage to within 0.003% (0.4 nm over a 15.4 m

range). A random step test was then performed, demonstrating no work volume or

step size bias between the internal capacitance sensor and 3-DOF interferometer. The

proposed 3-DOF interferometer demonstrates that accurate, repeatable calibrations of

nanopositioning stages can be performed at a functional point off axis from their internal

feedback sensor.

Appendix A

The most reliable and straightforward way to use this 3-DOF interferometer is to

calibrate the rotational readout signals to an external metrology tool. After doing so, if

the quadrant detector is held in place relative to the interferometer, accurate rotational

measurements can be obtained. However, if one wants to predict the rotational scaling,

a physical optics simulation can be used to achieve moderately accurate results as seen

in Figure 12. In order to do this, the Gaussian nature of the interfering beams must be

considered. Even though this Gaussian profile should be used for the reference beams,
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in practice the photodetector is placed close enough to the center and the unintentional

rotation is small enough that a plane wave approximation for the reference signal is valid.

The two interfering beams – governed by equation 7 – are incident on the quadrant

photodetector and the total electric field given on the detector is the sum of the electric

fields of the two beams, E1 and E2. The irradiance is proportional to the modulus

squared of this electric field,

I(x, y) ∝ A2
1 exp

{

− 2
(x− δx1)

2 + (y − δy1)
2

ω(z1)2

}

+ A2
2 exp

{

− 2
(x− δx2)

2 + (y − δy2)
2

ω(z2)2

}

+ A1A2 exp
{

−
[

(x− δx1)
2 + (y − δy1)

2
]( 1

ω(z1)2
+

ik

2R(z1)

)

}

∗ exp
{

−
[

(x− δx2)
2 + (y − δy2)

2
]

∗
(

1

ω(z2)2
− ik

2R(z2)

)

}

∗ exp [i(ζ(z1)− ζ(z2))] ∗ exp {ik [2β(x− δx2)

∗+2α(y − δy2) + ωst− φm}+ c.c.

(A.1)

where the majority of terms have been defined in Section 3, c.c. denotes the complex

conjugate, A1 = |E1|ω0,1/ω(z1), A2 = |E2|ω0,2/ω(z2), δx1 is the distance along the X-

axis between the detector center and the centroid of the first beam, δy1 is the distance

along the Y-axis between the detector center and the centroid of the first beam, and δx2

and δy2 are the same for the second beam. These distances are δx1 = x0,1, δy1 = y0,1,

δx2 = x0,2 + 2βzm,d, and δy2 = y0,2 + 2αzm,d. For these parameters, x0,1 is the initial

misalignment along the X-axis of the centroid of E1, y0,1 is the initial misalignment

along the Y-axis of the centroid of E1, x0,2 and y0,2 are the same for E2, and zm,d is the

distance from the measurement mirror to the detector. As before, the irradiance must

be integrated over the detector area to determine the measured signal on each detector.

Equation A.1 can be integrated over the finite limits of the detector where the resulting
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optical power on the A quadrant is

A ∝
∫ w
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(A.2)

Similarly, the power on the other three quadrants is given simply by changing the limits

of integration according to

A ∝
∫ w

0

∫ h

0
I (x, y) dydx,

B ∝
∫ w

0

∫ 0

−h
I (x, y) dydx,

C ∝
∫ 0

−w

∫ 0

−h
I (x, y) dydx, and

D ∝
∫ 0

−w

∫ h

0
I (x, y) dydx

. (A.3)

The full rectangular quadrant detector has a width 2w and a height 2h, thus, these

limits of integration are all from the center of all four detectors.

After the D.C. components are filtered out, the signal from one of the quadrants

has the form

A = fA(z, α, β)e
iωst + f ∗(z, α, β)e−iωst. (A.4)
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The lock-in detection scheme was used in this work to detect phase, thus the in-phase

and quadrature components become

IA =
1

2

(

eiωst + e−iωst
) [

fA(z, α, β)e
iωst + f ∗(z, α, β)e−iωst

]

and

QA =
1

2

(

ei(ωst+π/2) + e−i(ωst+π/2)
) (

fA(z, α, β)e
iωst + f ∗(z, α, β)e−iωst

)

.
(A.5)

After carrying out this multiplication and removing the signals at 2ωs, the resulting

components are

IA =
1

2
[fA(z, α, β) + f ∗

A(z, α, β)] and

QA =
i

2
[f ∗

A(z, α, β)− fa(z, α, β)] ,
(A.6)

which is equivalent to

IA = < [fA(z, α, β)] and

QA = = [fA(z, α, β)] .
Since the arctangent is computed, the phase is then

φA = arctan
= [fA(z, α, β)]

< [fA(z, α, β)]
= θA +mπ, (A.8)

where φA is the angle of the complex quantity described by fA(z, α, β) = |fA(z, α, β)|eiφA .

The remaining three phase terms from the other photodiode quadrants can be deter-

mined using a similar procedure. This model was used to simulate the readout of

measured rotations (Figures 10 and 11). The predicted effective length in Figure 11 is

inserted into Equations 2 and 3 as the Γ terms.
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